Metamath Proof Explorer


Theorem altopthbg

Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012)

Ref Expression
Assertion altopthbg
|- ( ( A e. V /\ D e. W ) -> ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) )

Proof

Step Hyp Ref Expression
1 altopthsn
 |-  ( << A , B >> = << C , D >> <-> ( { A } = { C } /\ { B } = { D } ) )
2 sneqbg
 |-  ( A e. V -> ( { A } = { C } <-> A = C ) )
3 sneqbg
 |-  ( D e. W -> ( { D } = { B } <-> D = B ) )
4 eqcom
 |-  ( { B } = { D } <-> { D } = { B } )
5 eqcom
 |-  ( B = D <-> D = B )
6 3 4 5 3bitr4g
 |-  ( D e. W -> ( { B } = { D } <-> B = D ) )
7 2 6 bi2anan9
 |-  ( ( A e. V /\ D e. W ) -> ( ( { A } = { C } /\ { B } = { D } ) <-> ( A = C /\ B = D ) ) )
8 1 7 syl5bb
 |-  ( ( A e. V /\ D e. W ) -> ( << A , B >> = << C , D >> <-> ( A = C /\ B = D ) ) )