Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Alternate ordered pairs
altopthbg
Next ⟩
altopth
Metamath Proof Explorer
Ascii
Unicode
Theorem
altopthbg
Description:
Alternate ordered pair theorem.
(Contributed by
Scott Fenton
, 14-Apr-2012)
Ref
Expression
Assertion
altopthbg
⊢
A
∈
V
∧
D
∈
W
→
A
B
=
C
D
↔
A
=
C
∧
B
=
D
Proof
Step
Hyp
Ref
Expression
1
altopthsn
⊢
A
B
=
C
D
↔
A
=
C
∧
B
=
D
2
sneqbg
⊢
A
∈
V
→
A
=
C
↔
A
=
C
3
sneqbg
⊢
D
∈
W
→
D
=
B
↔
D
=
B
4
eqcom
⊢
B
=
D
↔
D
=
B
5
eqcom
⊢
B
=
D
↔
D
=
B
6
3
4
5
3bitr4g
⊢
D
∈
W
→
B
=
D
↔
B
=
D
7
2
6
bi2anan9
⊢
A
∈
V
∧
D
∈
W
→
A
=
C
∧
B
=
D
↔
A
=
C
∧
B
=
D
8
1
7
bitrid
⊢
A
∈
V
∧
D
∈
W
→
A
B
=
C
D
↔
A
=
C
∧
B
=
D