Metamath Proof Explorer


Theorem altopthbg

Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012)

Ref Expression
Assertion altopthbg A V D W A B = C D A = C B = D

Proof

Step Hyp Ref Expression
1 altopthsn A B = C D A = C B = D
2 sneqbg A V A = C A = C
3 sneqbg D W D = B D = B
4 eqcom B = D D = B
5 eqcom B = D D = B
6 3 4 5 3bitr4g D W B = D B = D
7 2 6 bi2anan9 A V D W A = C B = D A = C B = D
8 1 7 syl5bb A V D W A B = C D A = C B = D