Description: Absorption into embedded conjunct. (Contributed by NM, 4-Sep-1995) (Proof shortened by Wolf Lammen, 16-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | anabs1 | |- ( ( ( ph /\ ps ) /\ ph ) <-> ( ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |- ( ( ph /\ ps ) -> ph ) |
|
2 | 1 | pm4.71i | |- ( ( ph /\ ps ) <-> ( ( ph /\ ps ) /\ ph ) ) |
3 | 2 | bicomi | |- ( ( ( ph /\ ps ) /\ ph ) <-> ( ph /\ ps ) ) |