Description: Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | anc2r | |- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( ch /\ ph ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 | |- ( ph -> ( ch -> ( ch /\ ph ) ) ) |
|
2 | 1 | imim2d | |- ( ph -> ( ( ps -> ch ) -> ( ps -> ( ch /\ ph ) ) ) ) |
3 | 2 | a2i | |- ( ( ph -> ( ps -> ch ) ) -> ( ph -> ( ps -> ( ch /\ ph ) ) ) ) |