Metamath Proof Explorer


Theorem anc2li

Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994) (Proof shortened by Wolf Lammen, 7-Dec-2012)

Ref Expression
Hypothesis anc2li.1
|- ( ph -> ( ps -> ch ) )
Assertion anc2li
|- ( ph -> ( ps -> ( ph /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 anc2li.1
 |-  ( ph -> ( ps -> ch ) )
2 id
 |-  ( ph -> ph )
3 1 2 jctild
 |-  ( ph -> ( ps -> ( ph /\ ch ) ) )