Metamath Proof Explorer


Theorem anc2li

Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994) (Proof shortened by Wolf Lammen, 7-Dec-2012)

Ref Expression
Hypothesis anc2li.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion anc2li ( 𝜑 → ( 𝜓 → ( 𝜑𝜒 ) ) )

Proof

Step Hyp Ref Expression
1 anc2li.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 id ( 𝜑𝜑 )
3 1 2 jctild ( 𝜑 → ( 𝜓 → ( 𝜑𝜒 ) ) )