Metamath Proof Explorer


Theorem anim12dan

Description: Conjoin antecedents and consequents in a deduction. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses anim12dan.1
|- ( ( ph /\ ps ) -> ch )
anim12dan.2
|- ( ( ph /\ th ) -> ta )
Assertion anim12dan
|- ( ( ph /\ ( ps /\ th ) ) -> ( ch /\ ta ) )

Proof

Step Hyp Ref Expression
1 anim12dan.1
 |-  ( ( ph /\ ps ) -> ch )
2 anim12dan.2
 |-  ( ( ph /\ th ) -> ta )
3 1 ex
 |-  ( ph -> ( ps -> ch ) )
4 2 ex
 |-  ( ph -> ( th -> ta ) )
5 3 4 anim12d
 |-  ( ph -> ( ( ps /\ th ) -> ( ch /\ ta ) ) )
6 5 imp
 |-  ( ( ph /\ ( ps /\ th ) ) -> ( ch /\ ta ) )