Metamath Proof Explorer


Theorem aovfundmoveq

Description: If a class is a function restricted to an ordered pair of its domain, then the value of the operation on this pair is equal for both definitions. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovfundmoveq
|- ( F defAt <. A , B >. -> (( A F B )) = ( A F B ) )

Proof

Step Hyp Ref Expression
1 afvfundmfveq
 |-  ( F defAt <. A , B >. -> ( F ''' <. A , B >. ) = ( F ` <. A , B >. ) )
2 df-aov
 |-  (( A F B )) = ( F ''' <. A , B >. )
3 df-ov
 |-  ( A F B ) = ( F ` <. A , B >. )
4 1 2 3 3eqtr4g
 |-  ( F defAt <. A , B >. -> (( A F B )) = ( A F B ) )