Metamath Proof Explorer


Theorem aovnfundmuv

Description: If an ordered pair is not in the domain of a class or the class is not a function restricted to the ordered pair, then the operation value for this pair is the universal class. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion aovnfundmuv
|- ( -. F defAt <. A , B >. -> (( A F B )) = _V )

Proof

Step Hyp Ref Expression
1 df-aov
 |-  (( A F B )) = ( F ''' <. A , B >. )
2 afvnfundmuv
 |-  ( -. F defAt <. A , B >. -> ( F ''' <. A , B >. ) = _V )
3 1 2 syl5eq
 |-  ( -. F defAt <. A , B >. -> (( A F B )) = _V )