Metamath Proof Explorer


Theorem afvnfundmuv

Description: If a set is not in the domain of a class or the class is not a function restricted to the set, then the function value for this set is the universe. (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Assertion afvnfundmuv
|- ( -. F defAt A -> ( F ''' A ) = _V )

Proof

Step Hyp Ref Expression
1 dfafv2
 |-  ( F ''' A ) = if ( F defAt A , ( F ` A ) , _V )
2 iffalse
 |-  ( -. F defAt A -> if ( F defAt A , ( F ` A ) , _V ) = _V )
3 1 2 eqtrid
 |-  ( -. F defAt A -> ( F ''' A ) = _V )