Metamath Proof Explorer


Theorem dfafv2

Description: Alternative definition of ( F ''' A ) using ( FA ) directly. (Contributed by Alexander van der Vekens, 22-Jul-2017) (Revised by AV, 25-Aug-2022)

Ref Expression
Assertion dfafv2
|- ( F ''' A ) = if ( F defAt A , ( F ` A ) , _V )

Proof

Step Hyp Ref Expression
1 df-fv
 |-  ( F ` A ) = ( iota x A F x )
2 simprr
 |-  ( ( T. /\ ( A e. dom F /\ E! x A F x ) ) -> E! x A F x )
3 reuaiotaiota
 |-  ( E! x A F x <-> ( iota x A F x ) = ( iota' x A F x ) )
4 2 3 sylib
 |-  ( ( T. /\ ( A e. dom F /\ E! x A F x ) ) -> ( iota x A F x ) = ( iota' x A F x ) )
5 1 4 eqtrid
 |-  ( ( T. /\ ( A e. dom F /\ E! x A F x ) ) -> ( F ` A ) = ( iota' x A F x ) )
6 eubrdm
 |-  ( E! x A F x -> A e. dom F )
7 6 ancri
 |-  ( E! x A F x -> ( A e. dom F /\ E! x A F x ) )
8 7 con3i
 |-  ( -. ( A e. dom F /\ E! x A F x ) -> -. E! x A F x )
9 8 adantl
 |-  ( ( T. /\ -. ( A e. dom F /\ E! x A F x ) ) -> -. E! x A F x )
10 aiotavb
 |-  ( -. E! x A F x <-> ( iota' x A F x ) = _V )
11 9 10 sylib
 |-  ( ( T. /\ -. ( A e. dom F /\ E! x A F x ) ) -> ( iota' x A F x ) = _V )
12 11 eqcomd
 |-  ( ( T. /\ -. ( A e. dom F /\ E! x A F x ) ) -> _V = ( iota' x A F x ) )
13 5 12 ifeqda
 |-  ( T. -> if ( ( A e. dom F /\ E! x A F x ) , ( F ` A ) , _V ) = ( iota' x A F x ) )
14 13 mptru
 |-  if ( ( A e. dom F /\ E! x A F x ) , ( F ` A ) , _V ) = ( iota' x A F x )
15 dfdfat2
 |-  ( F defAt A <-> ( A e. dom F /\ E! x A F x ) )
16 ifbi
 |-  ( ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) -> if ( F defAt A , ( F ` A ) , _V ) = if ( ( A e. dom F /\ E! x A F x ) , ( F ` A ) , _V ) )
17 15 16 ax-mp
 |-  if ( F defAt A , ( F ` A ) , _V ) = if ( ( A e. dom F /\ E! x A F x ) , ( F ` A ) , _V )
18 df-afv
 |-  ( F ''' A ) = ( iota' x A F x )
19 14 17 18 3eqtr4ri
 |-  ( F ''' A ) = if ( F defAt A , ( F ` A ) , _V )