| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fv |
|- ( F ` A ) = ( iota x A F x ) |
| 2 |
|
simprr |
|- ( ( T. /\ ( A e. dom F /\ E! x A F x ) ) -> E! x A F x ) |
| 3 |
|
reuaiotaiota |
|- ( E! x A F x <-> ( iota x A F x ) = ( iota' x A F x ) ) |
| 4 |
2 3
|
sylib |
|- ( ( T. /\ ( A e. dom F /\ E! x A F x ) ) -> ( iota x A F x ) = ( iota' x A F x ) ) |
| 5 |
1 4
|
eqtrid |
|- ( ( T. /\ ( A e. dom F /\ E! x A F x ) ) -> ( F ` A ) = ( iota' x A F x ) ) |
| 6 |
|
eubrdm |
|- ( E! x A F x -> A e. dom F ) |
| 7 |
6
|
ancri |
|- ( E! x A F x -> ( A e. dom F /\ E! x A F x ) ) |
| 8 |
7
|
con3i |
|- ( -. ( A e. dom F /\ E! x A F x ) -> -. E! x A F x ) |
| 9 |
8
|
adantl |
|- ( ( T. /\ -. ( A e. dom F /\ E! x A F x ) ) -> -. E! x A F x ) |
| 10 |
|
aiotavb |
|- ( -. E! x A F x <-> ( iota' x A F x ) = _V ) |
| 11 |
9 10
|
sylib |
|- ( ( T. /\ -. ( A e. dom F /\ E! x A F x ) ) -> ( iota' x A F x ) = _V ) |
| 12 |
11
|
eqcomd |
|- ( ( T. /\ -. ( A e. dom F /\ E! x A F x ) ) -> _V = ( iota' x A F x ) ) |
| 13 |
5 12
|
ifeqda |
|- ( T. -> if ( ( A e. dom F /\ E! x A F x ) , ( F ` A ) , _V ) = ( iota' x A F x ) ) |
| 14 |
13
|
mptru |
|- if ( ( A e. dom F /\ E! x A F x ) , ( F ` A ) , _V ) = ( iota' x A F x ) |
| 15 |
|
dfdfat2 |
|- ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) |
| 16 |
|
ifbi |
|- ( ( F defAt A <-> ( A e. dom F /\ E! x A F x ) ) -> if ( F defAt A , ( F ` A ) , _V ) = if ( ( A e. dom F /\ E! x A F x ) , ( F ` A ) , _V ) ) |
| 17 |
15 16
|
ax-mp |
|- if ( F defAt A , ( F ` A ) , _V ) = if ( ( A e. dom F /\ E! x A F x ) , ( F ` A ) , _V ) |
| 18 |
|
df-afv |
|- ( F ''' A ) = ( iota' x A F x ) |
| 19 |
14 17 18
|
3eqtr4ri |
|- ( F ''' A ) = if ( F defAt A , ( F ` A ) , _V ) |