Metamath Proof Explorer


Theorem eubrdm

Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion eubrdm
|- ( E! b A R b -> A e. dom R )

Proof

Step Hyp Ref Expression
1 eubrv
 |-  ( E! b A R b -> A e. _V )
2 iotaex
 |-  ( iota b A R b ) e. _V
3 2 a1i
 |-  ( E! b A R b -> ( iota b A R b ) e. _V )
4 iota4
 |-  ( E! b A R b -> [. ( iota b A R b ) / b ]. A R b )
5 sbcbr12g
 |-  ( ( iota b A R b ) e. _V -> ( [. ( iota b A R b ) / b ]. A R b <-> [_ ( iota b A R b ) / b ]_ A R [_ ( iota b A R b ) / b ]_ b ) )
6 2 5 ax-mp
 |-  ( [. ( iota b A R b ) / b ]. A R b <-> [_ ( iota b A R b ) / b ]_ A R [_ ( iota b A R b ) / b ]_ b )
7 csbconstg
 |-  ( ( iota b A R b ) e. _V -> [_ ( iota b A R b ) / b ]_ A = A )
8 2 7 ax-mp
 |-  [_ ( iota b A R b ) / b ]_ A = A
9 2 csbvargi
 |-  [_ ( iota b A R b ) / b ]_ b = ( iota b A R b )
10 8 9 breq12i
 |-  ( [_ ( iota b A R b ) / b ]_ A R [_ ( iota b A R b ) / b ]_ b <-> A R ( iota b A R b ) )
11 6 10 sylbb
 |-  ( [. ( iota b A R b ) / b ]. A R b -> A R ( iota b A R b ) )
12 4 11 syl
 |-  ( E! b A R b -> A R ( iota b A R b ) )
13 breldmg
 |-  ( ( A e. _V /\ ( iota b A R b ) e. _V /\ A R ( iota b A R b ) ) -> A e. dom R )
14 1 3 12 13 syl3anc
 |-  ( E! b A R b -> A e. dom R )