Step |
Hyp |
Ref |
Expression |
1 |
|
eubrv |
|- ( E! b A R b -> A e. _V ) |
2 |
|
iotaex |
|- ( iota b A R b ) e. _V |
3 |
2
|
a1i |
|- ( E! b A R b -> ( iota b A R b ) e. _V ) |
4 |
|
iota4 |
|- ( E! b A R b -> [. ( iota b A R b ) / b ]. A R b ) |
5 |
|
sbcbr12g |
|- ( ( iota b A R b ) e. _V -> ( [. ( iota b A R b ) / b ]. A R b <-> [_ ( iota b A R b ) / b ]_ A R [_ ( iota b A R b ) / b ]_ b ) ) |
6 |
2 5
|
ax-mp |
|- ( [. ( iota b A R b ) / b ]. A R b <-> [_ ( iota b A R b ) / b ]_ A R [_ ( iota b A R b ) / b ]_ b ) |
7 |
|
csbconstg |
|- ( ( iota b A R b ) e. _V -> [_ ( iota b A R b ) / b ]_ A = A ) |
8 |
2 7
|
ax-mp |
|- [_ ( iota b A R b ) / b ]_ A = A |
9 |
2
|
csbvargi |
|- [_ ( iota b A R b ) / b ]_ b = ( iota b A R b ) |
10 |
8 9
|
breq12i |
|- ( [_ ( iota b A R b ) / b ]_ A R [_ ( iota b A R b ) / b ]_ b <-> A R ( iota b A R b ) ) |
11 |
6 10
|
sylbb |
|- ( [. ( iota b A R b ) / b ]. A R b -> A R ( iota b A R b ) ) |
12 |
4 11
|
syl |
|- ( E! b A R b -> A R ( iota b A R b ) ) |
13 |
|
breldmg |
|- ( ( A e. _V /\ ( iota b A R b ) e. _V /\ A R ( iota b A R b ) ) -> A e. dom R ) |
14 |
1 3 12 13
|
syl3anc |
|- ( E! b A R b -> A e. dom R ) |