Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | eldmressn | |- ( B e. dom ( F |` { A } ) -> B = A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |- ( B e. ( { A } i^i dom F ) <-> ( B e. { A } /\ B e. dom F ) ) |
|
2 | elsni | |- ( B e. { A } -> B = A ) |
|
3 | 2 | adantr | |- ( ( B e. { A } /\ B e. dom F ) -> B = A ) |
4 | 1 3 | sylbi | |- ( B e. ( { A } i^i dom F ) -> B = A ) |
5 | dmres | |- dom ( F |` { A } ) = ( { A } i^i dom F ) |
|
6 | 4 5 | eleq2s | |- ( B e. dom ( F |` { A } ) -> B = A ) |