Metamath Proof Explorer


Theorem eldmressn

Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion eldmressn
|- ( B e. dom ( F |` { A } ) -> B = A )

Proof

Step Hyp Ref Expression
1 elin
 |-  ( B e. ( { A } i^i dom F ) <-> ( B e. { A } /\ B e. dom F ) )
2 elsni
 |-  ( B e. { A } -> B = A )
3 2 adantr
 |-  ( ( B e. { A } /\ B e. dom F ) -> B = A )
4 1 3 sylbi
 |-  ( B e. ( { A } i^i dom F ) -> B = A )
5 dmres
 |-  dom ( F |` { A } ) = ( { A } i^i dom F )
6 4 5 eleq2s
 |-  ( B e. dom ( F |` { A } ) -> B = A )