Metamath Proof Explorer


Theorem eldmressn

Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion eldmressn ( 𝐵 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → 𝐵 = 𝐴 )

Proof

Step Hyp Ref Expression
1 elin ( 𝐵 ∈ ( { 𝐴 } ∩ dom 𝐹 ) ↔ ( 𝐵 ∈ { 𝐴 } ∧ 𝐵 ∈ dom 𝐹 ) )
2 elsni ( 𝐵 ∈ { 𝐴 } → 𝐵 = 𝐴 )
3 2 adantr ( ( 𝐵 ∈ { 𝐴 } ∧ 𝐵 ∈ dom 𝐹 ) → 𝐵 = 𝐴 )
4 1 3 sylbi ( 𝐵 ∈ ( { 𝐴 } ∩ dom 𝐹 ) → 𝐵 = 𝐴 )
5 dmres dom ( 𝐹 ↾ { 𝐴 } ) = ( { 𝐴 } ∩ dom 𝐹 )
6 4 5 eleq2s ( 𝐵 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → 𝐵 = 𝐴 )