Metamath Proof Explorer


Theorem eldmressn

Description: Element of the domain of a restriction to a singleton. (Contributed by Alexander van der Vekens, 2-Jul-2017)

Ref Expression
Assertion eldmressn B dom F A B = A

Proof

Step Hyp Ref Expression
1 elin B A dom F B A B dom F
2 elsni B A B = A
3 2 adantr B A B dom F B = A
4 1 3 sylbi B A dom F B = A
5 dmres dom F A = A dom F
6 4 5 eleq2s B dom F A B = A