Metamath Proof Explorer


Theorem eubrdm

Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion eubrdm ∃!bARbAdomR

Proof

Step Hyp Ref Expression
1 eubrv ∃!bARbAV
2 iotaex ιb|ARbV
3 2 a1i ∃!bARbιb|ARbV
4 iota4 ∃!bARb[˙ιb|ARb/b]˙ARb
5 sbcbr12g ιb|ARbV[˙ιb|ARb/b]˙ARbιb|ARb/bARιb|ARb/bb
6 2 5 ax-mp [˙ιb|ARb/b]˙ARbιb|ARb/bARιb|ARb/bb
7 csbconstg ιb|ARbVιb|ARb/bA=A
8 2 7 ax-mp ιb|ARb/bA=A
9 2 csbvargi ιb|ARb/bb=ιb|ARb
10 8 9 breq12i ιb|ARb/bARιb|ARb/bbARιb|ARb
11 6 10 sylbb [˙ιb|ARb/b]˙ARbARιb|ARb
12 4 11 syl ∃!bARbARιb|ARb
13 breldmg AVιb|ARbVARιb|ARbAdomR
14 1 3 12 13 syl3anc ∃!bARbAdomR