Metamath Proof Explorer


Theorem eubrdm

Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion eubrdm ∃! b A R b A dom R

Proof

Step Hyp Ref Expression
1 eubrv ∃! b A R b A V
2 iotaex ι b | A R b V
3 2 a1i ∃! b A R b ι b | A R b V
4 iota4 ∃! b A R b [˙ ι b | A R b / b]˙ A R b
5 sbcbr12g ι b | A R b V [˙ ι b | A R b / b]˙ A R b ι b | A R b / b A R ι b | A R b / b b
6 2 5 ax-mp [˙ ι b | A R b / b]˙ A R b ι b | A R b / b A R ι b | A R b / b b
7 csbconstg ι b | A R b V ι b | A R b / b A = A
8 2 7 ax-mp ι b | A R b / b A = A
9 2 csbvargi ι b | A R b / b b = ι b | A R b
10 8 9 breq12i ι b | A R b / b A R ι b | A R b / b b A R ι b | A R b
11 6 10 sylbb [˙ ι b | A R b / b]˙ A R b A R ι b | A R b
12 4 11 syl ∃! b A R b A R ι b | A R b
13 breldmg A V ι b | A R b V A R ι b | A R b A dom R
14 1 3 12 13 syl3anc ∃! b A R b A dom R