Metamath Proof Explorer


Theorem iota4

Description: Theorem *14.22 in WhiteheadRussell p. 190. (Contributed by Andrew Salmon, 12-Jul-2011)

Ref Expression
Assertion iota4 ∃!xφ[˙ιx|φ/x]˙φ

Proof

Step Hyp Ref Expression
1 eu6 ∃!xφzxφx=z
2 biimpr φx=zx=zφ
3 2 alimi xφx=zxx=zφ
4 sb6 zxφxx=zφ
5 3 4 sylibr xφx=zzxφ
6 iotaval xφx=zιx|φ=z
7 6 eqcomd xφx=zz=ιx|φ
8 dfsbcq2 z=ιx|φzxφ[˙ιx|φ/x]˙φ
9 7 8 syl xφx=zzxφ[˙ιx|φ/x]˙φ
10 5 9 mpbid xφx=z[˙ιx|φ/x]˙φ
11 10 exlimiv zxφx=z[˙ιx|φ/x]˙φ
12 1 11 sylbi ∃!xφ[˙ιx|φ/x]˙φ