Metamath Proof Explorer


Theorem iotaval

Description: Theorem 8.19 in Quine p. 57. This theorem is the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011) Remove dependency on ax-10 , ax-11 , ax-12 . (Revised by SN, 23-Nov-2024)

Ref Expression
Assertion iotaval xφx=yιx|φ=y

Proof

Step Hyp Ref Expression
1 abbi xφx=yx|φ=x|x=y
2 df-sn y=x|x=y
3 1 2 eqtr4di xφx=yx|φ=y
4 iotaval2 x|φ=yιx|φ=y
5 3 4 syl xφx=yιx|φ=y