Metamath Proof Explorer


Theorem abbi

Description: Equivalent formulas define equal class abstractions, and conversely. (Contributed by NM, 25-Nov-2013) (Revised by Mario Carneiro, 11-Aug-2016) Remove dependency on ax-8 and df-clel (by avoiding use of cleqh ). (Revised by BJ, 23-Jun-2019)

Ref Expression
Assertion abbi x φ ψ x | φ = x | ψ

Proof

Step Hyp Ref Expression
1 dfcleq x | φ = x | ψ y y x | φ y x | ψ
2 nfsab1 x y x | φ
3 nfsab1 x y x | ψ
4 2 3 nfbi x y x | φ y x | ψ
5 nfv y φ ψ
6 df-clab y x | φ y x φ
7 sbequ12r y = x y x φ φ
8 6 7 bitrid y = x y x | φ φ
9 df-clab y x | ψ y x ψ
10 sbequ12r y = x y x ψ ψ
11 9 10 bitrid y = x y x | ψ ψ
12 8 11 bibi12d y = x y x | φ y x | ψ φ ψ
13 4 5 12 cbvalv1 y y x | φ y x | ψ x φ ψ
14 1 13 bitr2i x φ ψ x | φ = x | ψ