Metamath Proof Explorer


Theorem abbib

Description: Equal class abstractions require equivalent formulas, and conversely. (Contributed by NM, 25-Nov-2013) (Revised by Mario Carneiro, 11-Aug-2016) Remove dependency on ax-8 and df-clel (by avoiding use of cleqh ). (Revised by BJ, 23-Jun-2019) Definitial form. (Revised by Wolf Lammen, 23-Feb-2025)

Ref Expression
Assertion abbib x|φ=x|ψxφψ

Proof

Step Hyp Ref Expression
1 dfcleq x|φ=x|ψyyx|φyx|ψ
2 nfsab1 xyx|φ
3 nfsab1 xyx|ψ
4 2 3 nfbi xyx|φyx|ψ
5 nfv yφψ
6 df-clab yx|φyxφ
7 sbequ12r y=xyxφφ
8 6 7 bitrid y=xyx|φφ
9 df-clab yx|ψyxψ
10 sbequ12r y=xyxψψ
11 9 10 bitrid y=xyx|ψψ
12 8 11 bibi12d y=xyx|φyx|ψφψ
13 4 5 12 cbvalv1 yyx|φyx|ψxφψ
14 1 13 bitri x|φ=x|ψxφψ