Metamath Proof Explorer


Theorem cleqh

Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions as in dfcleq . See also cleqf . (Contributed by NM, 26-May-1993) (Proof shortened by Wolf Lammen, 14-Nov-2019) Remove dependency on ax-13 . (Revised by BJ, 30-Nov-2020)

Ref Expression
Hypotheses cleqh.1 y A x y A
cleqh.2 y B x y B
Assertion cleqh A = B x x A x B

Proof

Step Hyp Ref Expression
1 cleqh.1 y A x y A
2 cleqh.2 y B x y B
3 dfcleq A = B y y A y B
4 nfv y x A x B
5 1 nf5i x y A
6 2 nf5i x y B
7 5 6 nfbi x y A y B
8 eleq1w x = y x A y A
9 eleq1w x = y x B y B
10 8 9 bibi12d x = y x A x B y A y B
11 4 7 10 cbvalv1 x x A x B y y A y B
12 3 11 bitr4i A = B x x A x B