Metamath Proof Explorer


Theorem iotaval2

Description: Version of iotaval using df-iota instead of dfiota2 . (Contributed by SN, 6-Nov-2024)

Ref Expression
Assertion iotaval2 x|φ=yιx|φ=y

Proof

Step Hyp Ref Expression
1 df-iota ιx|φ=w|x|φ=w
2 eqeq1 x|φ=yx|φ=wy=w
3 sneqbg yVy=wy=w
4 3 elv y=wy=w
5 equcom y=ww=y
6 4 5 bitri y=ww=y
7 2 6 bitrdi x|φ=yx|φ=ww=y
8 7 alrimiv x|φ=ywx|φ=ww=y
9 uniabio wx|φ=ww=yw|x|φ=w=y
10 8 9 syl x|φ=yw|x|φ=w=y
11 1 10 eqtrid x|φ=yιx|φ=y