Metamath Proof Explorer


Theorem breldmg

Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007)

Ref Expression
Assertion breldmg A C B D A R B A dom R

Proof

Step Hyp Ref Expression
1 breq2 x = B A R x A R B
2 1 spcegv B D A R B x A R x
3 2 imp B D A R B x A R x
4 eldmg A C A dom R x A R x
5 3 4 syl5ibr A C B D A R B A dom R
6 5 3impib A C B D A R B A dom R