Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
breldmg
Next ⟩
dmun
Metamath Proof Explorer
Ascii
Unicode
Theorem
breldmg
Description:
Membership of first of a binary relation in a domain.
(Contributed by
NM
, 21-Mar-2007)
Ref
Expression
Assertion
breldmg
⊢
A
∈
C
∧
B
∈
D
∧
A
R
B
→
A
∈
dom
⁡
R
Proof
Step
Hyp
Ref
Expression
1
breq2
⊢
x
=
B
→
A
R
x
↔
A
R
B
2
1
spcegv
⊢
B
∈
D
→
A
R
B
→
∃
x
A
R
x
3
2
imp
⊢
B
∈
D
∧
A
R
B
→
∃
x
A
R
x
4
eldmg
⊢
A
∈
C
→
A
∈
dom
⁡
R
↔
∃
x
A
R
x
5
3
4
syl5ibr
⊢
A
∈
C
→
B
∈
D
∧
A
R
B
→
A
∈
dom
⁡
R
6
5
3impib
⊢
A
∈
C
∧
B
∈
D
∧
A
R
B
→
A
∈
dom
⁡
R