Description: Membership of first of a binary relation in a domain. (Contributed by NM, 21-Mar-2007)
Ref | Expression | ||
---|---|---|---|
Assertion | breldmg | |- ( ( A e. C /\ B e. D /\ A R B ) -> A e. dom R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |- ( x = B -> ( A R x <-> A R B ) ) |
|
2 | 1 | spcegv | |- ( B e. D -> ( A R B -> E. x A R x ) ) |
3 | 2 | imp | |- ( ( B e. D /\ A R B ) -> E. x A R x ) |
4 | eldmg | |- ( A e. C -> ( A e. dom R <-> E. x A R x ) ) |
|
5 | 3 4 | syl5ibr | |- ( A e. C -> ( ( B e. D /\ A R B ) -> A e. dom R ) ) |
6 | 5 | 3impib | |- ( ( A e. C /\ B e. D /\ A R B ) -> A e. dom R ) |