| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eubrv |
⊢ ( ∃! 𝑏 𝐴 𝑅 𝑏 → 𝐴 ∈ V ) |
| 2 |
|
iotaex |
⊢ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V |
| 3 |
2
|
a1i |
⊢ ( ∃! 𝑏 𝐴 𝑅 𝑏 → ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V ) |
| 4 |
|
iota4 |
⊢ ( ∃! 𝑏 𝐴 𝑅 𝑏 → [ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ] 𝐴 𝑅 𝑏 ) |
| 5 |
|
sbcbr12g |
⊢ ( ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V → ( [ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ] 𝐴 𝑅 𝑏 ↔ ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝐴 𝑅 ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝑏 ) ) |
| 6 |
2 5
|
ax-mp |
⊢ ( [ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ] 𝐴 𝑅 𝑏 ↔ ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝐴 𝑅 ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝑏 ) |
| 7 |
|
csbconstg |
⊢ ( ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V → ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝐴 = 𝐴 ) |
| 8 |
2 7
|
ax-mp |
⊢ ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝐴 = 𝐴 |
| 9 |
2
|
csbvargi |
⊢ ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝑏 = ( ℩ 𝑏 𝐴 𝑅 𝑏 ) |
| 10 |
8 9
|
breq12i |
⊢ ( ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝐴 𝑅 ⦋ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ⦌ 𝑏 ↔ 𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ) |
| 11 |
6 10
|
sylbb |
⊢ ( [ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ] 𝐴 𝑅 𝑏 → 𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ) |
| 12 |
4 11
|
syl |
⊢ ( ∃! 𝑏 𝐴 𝑅 𝑏 → 𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ) |
| 13 |
|
breldmg |
⊢ ( ( 𝐴 ∈ V ∧ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V ∧ 𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ) → 𝐴 ∈ dom 𝑅 ) |
| 14 |
1 3 12 13
|
syl3anc |
⊢ ( ∃! 𝑏 𝐴 𝑅 𝑏 → 𝐴 ∈ dom 𝑅 ) |