Metamath Proof Explorer


Theorem eubrdm

Description: If there is a unique set which is related to a class, then the class is an element of the domain of the relation. (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion eubrdm ( ∃! 𝑏 𝐴 𝑅 𝑏𝐴 ∈ dom 𝑅 )

Proof

Step Hyp Ref Expression
1 eubrv ( ∃! 𝑏 𝐴 𝑅 𝑏𝐴 ∈ V )
2 iotaex ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V
3 2 a1i ( ∃! 𝑏 𝐴 𝑅 𝑏 → ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V )
4 iota4 ( ∃! 𝑏 𝐴 𝑅 𝑏[ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ] 𝐴 𝑅 𝑏 )
5 sbcbr12g ( ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V → ( [ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ] 𝐴 𝑅 𝑏 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝑏 ) )
6 2 5 ax-mp ( [ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ] 𝐴 𝑅 𝑏 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝑏 )
7 csbconstg ( ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V → ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝐴 = 𝐴 )
8 2 7 ax-mp ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝐴 = 𝐴
9 2 csbvargi ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝑏 = ( ℩ 𝑏 𝐴 𝑅 𝑏 )
10 8 9 breq12i ( ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 𝑏𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) )
11 6 10 sylbb ( [ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) / 𝑏 ] 𝐴 𝑅 𝑏𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) )
12 4 11 syl ( ∃! 𝑏 𝐴 𝑅 𝑏𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) )
13 breldmg ( ( 𝐴 ∈ V ∧ ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ∈ V ∧ 𝐴 𝑅 ( ℩ 𝑏 𝐴 𝑅 𝑏 ) ) → 𝐴 ∈ dom 𝑅 )
14 1 3 12 13 syl3anc ( ∃! 𝑏 𝐴 𝑅 𝑏𝐴 ∈ dom 𝑅 )