Metamath Proof Explorer


Theorem aiotavb

Description: The alternate iota over a wff ph is the universe iff there is no unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiotavb
|- ( -. E! x ph <-> ( iota' x ph ) = _V )

Proof

Step Hyp Ref Expression
1 intnex
 |-  ( -. |^| { y | { x | ph } = { y } } e. _V <-> |^| { y | { x | ph } = { y } } = _V )
2 df-aiota
 |-  ( iota' x ph ) = |^| { y | { x | ph } = { y } }
3 2 eleq1i
 |-  ( ( iota' x ph ) e. _V <-> |^| { y | { x | ph } = { y } } e. _V )
4 3 notbii
 |-  ( -. ( iota' x ph ) e. _V <-> -. |^| { y | { x | ph } = { y } } e. _V )
5 2 eqeq1i
 |-  ( ( iota' x ph ) = _V <-> |^| { y | { x | ph } = { y } } = _V )
6 1 4 5 3bitr4i
 |-  ( -. ( iota' x ph ) e. _V <-> ( iota' x ph ) = _V )
7 aiotaexb
 |-  ( E! x ph <-> ( iota' x ph ) e. _V )
8 6 7 xchnxbir
 |-  ( -. E! x ph <-> ( iota' x ph ) = _V )