Metamath Proof Explorer


Theorem aiotavb

Description: The alternate iota over a wff ph is the universe iff there is no unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiotavb ¬ ∃! x φ ι = V

Proof

Step Hyp Ref Expression
1 intnex ¬ y | x | φ = y V y | x | φ = y = V
2 df-aiota ι = y | x | φ = y
3 2 eleq1i ι V y | x | φ = y V
4 3 notbii ¬ ι V ¬ y | x | φ = y V
5 2 eqeq1i ι = V y | x | φ = y = V
6 1 4 5 3bitr4i ¬ ι V ι = V
7 aiotaexb ∃! x φ ι V
8 6 7 xchnxbir ¬ ∃! x φ ι = V