Metamath Proof Explorer


Theorem aiotaexb

Description: The alternate iota over a wff ph is a set iff there is a unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiotaexb ∃! x φ ι V

Proof

Step Hyp Ref Expression
1 intexab y x | φ = y y | x | φ = y V
2 euabsn2 ∃! x φ y x | φ = y
3 df-aiota ι = y | x | φ = y
4 3 eleq1i ι V y | x | φ = y V
5 1 2 4 3bitr4i ∃! x φ ι V