Metamath Proof Explorer


Theorem aiotaexb

Description: The alternate iota over a wff ph is a set iff there is a unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion aiotaexb
|- ( E! x ph <-> ( iota' x ph ) e. _V )

Proof

Step Hyp Ref Expression
1 intexab
 |-  ( E. y { x | ph } = { y } <-> |^| { y | { x | ph } = { y } } e. _V )
2 euabsn2
 |-  ( E! x ph <-> E. y { x | ph } = { y } )
3 df-aiota
 |-  ( iota' x ph ) = |^| { y | { x | ph } = { y } }
4 3 eleq1i
 |-  ( ( iota' x ph ) e. _V <-> |^| { y | { x | ph } = { y } } e. _V )
5 1 2 4 3bitr4i
 |-  ( E! x ph <-> ( iota' x ph ) e. _V )