Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | intnex | |- ( -. |^| A e. _V <-> |^| A = _V ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | intex | |- ( A =/= (/) <-> |^| A e. _V ) |
|
| 2 | 1 | necon1bbii | |- ( -. |^| A e. _V <-> A = (/) ) |
| 3 | inteq | |- ( A = (/) -> |^| A = |^| (/) ) |
|
| 4 | int0 | |- |^| (/) = _V |
|
| 5 | 3 4 | eqtrdi | |- ( A = (/) -> |^| A = _V ) |
| 6 | 2 5 | sylbi | |- ( -. |^| A e. _V -> |^| A = _V ) |
| 7 | vprc | |- -. _V e. _V |
|
| 8 | eleq1 | |- ( |^| A = _V -> ( |^| A e. _V <-> _V e. _V ) ) |
|
| 9 | 7 8 | mtbiri | |- ( |^| A = _V -> -. |^| A e. _V ) |
| 10 | 6 9 | impbii | |- ( -. |^| A e. _V <-> |^| A = _V ) |