Metamath Proof Explorer


Theorem intnex

Description: If a class intersection is not a set, it must be the universe. (Contributed by NM, 3-Jul-2005)

Ref Expression
Assertion intnex
|- ( -. |^| A e. _V <-> |^| A = _V )

Proof

Step Hyp Ref Expression
1 intex
 |-  ( A =/= (/) <-> |^| A e. _V )
2 1 necon1bbii
 |-  ( -. |^| A e. _V <-> A = (/) )
3 inteq
 |-  ( A = (/) -> |^| A = |^| (/) )
4 int0
 |-  |^| (/) = _V
5 3 4 eqtrdi
 |-  ( A = (/) -> |^| A = _V )
6 2 5 sylbi
 |-  ( -. |^| A e. _V -> |^| A = _V )
7 vprc
 |-  -. _V e. _V
8 eleq1
 |-  ( |^| A = _V -> ( |^| A e. _V <-> _V e. _V ) )
9 7 8 mtbiri
 |-  ( |^| A = _V -> -. |^| A e. _V )
10 6 9 impbii
 |-  ( -. |^| A e. _V <-> |^| A = _V )