Metamath Proof Explorer


Theorem reuaiotaiota

Description: The iota and the alternate iota over a wff ph are equal iff there is a unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion reuaiotaiota
|- ( E! x ph <-> ( iota x ph ) = ( iota' x ph ) )

Proof

Step Hyp Ref Expression
1 euabsneu
 |-  ( E! x ph <-> E! y { x | ph } = { y } )
2 reuabaiotaiota
 |-  ( E! y { x | ph } = { y } <-> ( iota x ph ) = ( iota' x ph ) )
3 1 2 bitri
 |-  ( E! x ph <-> ( iota x ph ) = ( iota' x ph ) )