Metamath Proof Explorer


Theorem reuaiotaiota

Description: The iota and the alternate iota over a wff ph are equal iff there is a unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion reuaiotaiota ∃!xφιx|φ=ι

Proof

Step Hyp Ref Expression
1 euabsneu ∃!xφ∃!yx|φ=y
2 reuabaiotaiota ∃!yx|φ=yιx|φ=ι
3 1 2 bitri ∃!xφιx|φ=ι