Metamath Proof Explorer


Theorem reuaiotaiota

Description: The iota and the alternate iota over a wff ph are equal iff there is a unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion reuaiotaiota ∃! x φ ι x | φ = ι

Proof

Step Hyp Ref Expression
1 euabsneu ∃! x φ ∃! y x | φ = y
2 reuabaiotaiota ∃! y x | φ = y ι x | φ = ι
3 1 2 bitri ∃! x φ ι x | φ = ι