Metamath Proof Explorer


Theorem reuaiotaiota

Description: The iota and the alternate iota over a wff ph are equal iff there is a unique value x satisfying ph . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion reuaiotaiota ( ∃! 𝑥 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 euabsneu ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 { 𝑥𝜑 } = { 𝑦 } )
2 reuabaiotaiota ( ∃! 𝑦 { 𝑥𝜑 } = { 𝑦 } ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )
3 1 2 bitri ( ∃! 𝑥 𝜑 ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )