Description: The iota and the alternate iota over a wff ph are equal iff there is a unique satisfying value of { x | ph } = { y } . (Contributed by AV, 25-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | reuabaiotaiota | ⊢ ( ∃! 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniintab | ⊢ ( ∃! 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ ∪ { 𝑦 ∣ { 𝑥 ∣ 𝜑 } = { 𝑦 } } = ∩ { 𝑦 ∣ { 𝑥 ∣ 𝜑 } = { 𝑦 } } ) | |
2 | df-iota | ⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑦 ∣ { 𝑥 ∣ 𝜑 } = { 𝑦 } } | |
3 | df-aiota | ⊢ ( ℩' 𝑥 𝜑 ) = ∩ { 𝑦 ∣ { 𝑥 ∣ 𝜑 } = { 𝑦 } } | |
4 | 2 3 | eqeq12i | ⊢ ( ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) ↔ ∪ { 𝑦 ∣ { 𝑥 ∣ 𝜑 } = { 𝑦 } } = ∩ { 𝑦 ∣ { 𝑥 ∣ 𝜑 } = { 𝑦 } } ) |
5 | 1 4 | bitr4i | ⊢ ( ∃! 𝑦 { 𝑥 ∣ 𝜑 } = { 𝑦 } ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) ) |