Metamath Proof Explorer


Theorem reuabaiotaiota

Description: The iota and the alternate iota over a wff ph are equal iff there is a unique satisfying value of { x | ph } = { y } . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion reuabaiotaiota ( ∃! 𝑦 { 𝑥𝜑 } = { 𝑦 } ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 uniintab ( ∃! 𝑦 { 𝑥𝜑 } = { 𝑦 } ↔ { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } } = { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } } )
2 df-iota ( ℩ 𝑥 𝜑 ) = { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } }
3 df-aiota ( ℩' 𝑥 𝜑 ) = { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } }
4 2 3 eqeq12i ( ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) ↔ { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } } = { 𝑦 ∣ { 𝑥𝜑 } = { 𝑦 } } )
5 1 4 bitr4i ( ∃! 𝑦 { 𝑥𝜑 } = { 𝑦 } ↔ ( ℩ 𝑥 𝜑 ) = ( ℩' 𝑥 𝜑 ) )