Metamath Proof Explorer


Theorem reuabaiotaiota

Description: The iota and the alternate iota over a wff ph are equal iff there is a unique satisfying value of { x | ph } = { y } . (Contributed by AV, 25-Aug-2022)

Ref Expression
Assertion reuabaiotaiota
|- ( E! y { x | ph } = { y } <-> ( iota x ph ) = ( iota' x ph ) )

Proof

Step Hyp Ref Expression
1 uniintab
 |-  ( E! y { x | ph } = { y } <-> U. { y | { x | ph } = { y } } = |^| { y | { x | ph } = { y } } )
2 df-iota
 |-  ( iota x ph ) = U. { y | { x | ph } = { y } }
3 df-aiota
 |-  ( iota' x ph ) = |^| { y | { x | ph } = { y } }
4 2 3 eqeq12i
 |-  ( ( iota x ph ) = ( iota' x ph ) <-> U. { y | { x | ph } = { y } } = |^| { y | { x | ph } = { y } } )
5 1 4 bitr4i
 |-  ( E! y { x | ph } = { y } <-> ( iota x ph ) = ( iota' x ph ) )