Description: The iota and the alternate iota over a wff ph are equal iff there is a unique satisfying value of { x | ph } = { y } . (Contributed by AV, 25-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | reuabaiotaiota | |- ( E! y { x | ph } = { y } <-> ( iota x ph ) = ( iota' x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniintab | |- ( E! y { x | ph } = { y } <-> U. { y | { x | ph } = { y } } = |^| { y | { x | ph } = { y } } ) |
|
2 | df-iota | |- ( iota x ph ) = U. { y | { x | ph } = { y } } |
|
3 | df-aiota | |- ( iota' x ph ) = |^| { y | { x | ph } = { y } } |
|
4 | 2 3 | eqeq12i | |- ( ( iota x ph ) = ( iota' x ph ) <-> U. { y | { x | ph } = { y } } = |^| { y | { x | ph } = { y } } ) |
5 | 1 4 | bitr4i | |- ( E! y { x | ph } = { y } <-> ( iota x ph ) = ( iota' x ph ) ) |