Metamath Proof Explorer


Theorem euabsneu

Description: Another way to express existential uniqueness of a wff ph : its associated class abstraction { x | ph } is a singleton. Variant of euabsn2 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion euabsneu ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 { 𝑥𝜑 } = { 𝑦 } )

Proof

Step Hyp Ref Expression
1 mosneq ∃* 𝑦 { 𝑦 } = { 𝑥𝜑 }
2 eqcom ( { 𝑦 } = { 𝑥𝜑 } ↔ { 𝑥𝜑 } = { 𝑦 } )
3 2 mobii ( ∃* 𝑦 { 𝑦 } = { 𝑥𝜑 } ↔ ∃* 𝑦 { 𝑥𝜑 } = { 𝑦 } )
4 1 3 mpbi ∃* 𝑦 { 𝑥𝜑 } = { 𝑦 }
5 4 biantru ( ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } ↔ ( ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } ∧ ∃* 𝑦 { 𝑥𝜑 } = { 𝑦 } ) )
6 euabsn2 ( ∃! 𝑥 𝜑 ↔ ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } )
7 df-eu ( ∃! 𝑦 { 𝑥𝜑 } = { 𝑦 } ↔ ( ∃ 𝑦 { 𝑥𝜑 } = { 𝑦 } ∧ ∃* 𝑦 { 𝑥𝜑 } = { 𝑦 } ) )
8 5 6 7 3bitr4i ( ∃! 𝑥 𝜑 ↔ ∃! 𝑦 { 𝑥𝜑 } = { 𝑦 } )