Metamath Proof Explorer


Theorem euabsneu

Description: Another way to express existential uniqueness of a wff ph : its associated class abstraction { x | ph } is a singleton. Variant of euabsn2 using existential uniqueness for the singleton element instead of existence only. (Contributed by AV, 24-Aug-2022)

Ref Expression
Assertion euabsneu
|- ( E! x ph <-> E! y { x | ph } = { y } )

Proof

Step Hyp Ref Expression
1 mosneq
 |-  E* y { y } = { x | ph }
2 eqcom
 |-  ( { y } = { x | ph } <-> { x | ph } = { y } )
3 2 mobii
 |-  ( E* y { y } = { x | ph } <-> E* y { x | ph } = { y } )
4 1 3 mpbi
 |-  E* y { x | ph } = { y }
5 4 biantru
 |-  ( E. y { x | ph } = { y } <-> ( E. y { x | ph } = { y } /\ E* y { x | ph } = { y } ) )
6 euabsn2
 |-  ( E! x ph <-> E. y { x | ph } = { y } )
7 df-eu
 |-  ( E! y { x | ph } = { y } <-> ( E. y { x | ph } = { y } /\ E* y { x | ph } = { y } ) )
8 5 6 7 3bitr4i
 |-  ( E! x ph <-> E! y { x | ph } = { y } )