Metamath Proof Explorer


Theorem afveq12d

Description: Equality deduction for function value, analogous to fveq12d . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses afveq12d.1
|- ( ph -> F = G )
afveq12d.2
|- ( ph -> A = B )
Assertion afveq12d
|- ( ph -> ( F ''' A ) = ( G ''' B ) )

Proof

Step Hyp Ref Expression
1 afveq12d.1
 |-  ( ph -> F = G )
2 afveq12d.2
 |-  ( ph -> A = B )
3 1 2 dfateq12d
 |-  ( ph -> ( F defAt A <-> G defAt B ) )
4 1 2 fveq12d
 |-  ( ph -> ( F ` A ) = ( G ` B ) )
5 3 4 ifbieq1d
 |-  ( ph -> if ( F defAt A , ( F ` A ) , _V ) = if ( G defAt B , ( G ` B ) , _V ) )
6 dfafv2
 |-  ( F ''' A ) = if ( F defAt A , ( F ` A ) , _V )
7 dfafv2
 |-  ( G ''' B ) = if ( G defAt B , ( G ` B ) , _V )
8 5 6 7 3eqtr4g
 |-  ( ph -> ( F ''' A ) = ( G ''' B ) )