Description: Equality deduction for function value, analogous to fveq12d . (Contributed by Alexander van der Vekens, 26-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | afveq12d.1 | |- ( ph -> F = G ) |
|
afveq12d.2 | |- ( ph -> A = B ) |
||
Assertion | afveq12d | |- ( ph -> ( F ''' A ) = ( G ''' B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afveq12d.1 | |- ( ph -> F = G ) |
|
2 | afveq12d.2 | |- ( ph -> A = B ) |
|
3 | 1 2 | dfateq12d | |- ( ph -> ( F defAt A <-> G defAt B ) ) |
4 | 1 2 | fveq12d | |- ( ph -> ( F ` A ) = ( G ` B ) ) |
5 | 3 4 | ifbieq1d | |- ( ph -> if ( F defAt A , ( F ` A ) , _V ) = if ( G defAt B , ( G ` B ) , _V ) ) |
6 | dfafv2 | |- ( F ''' A ) = if ( F defAt A , ( F ` A ) , _V ) |
|
7 | dfafv2 | |- ( G ''' B ) = if ( G defAt B , ( G ` B ) , _V ) |
|
8 | 5 6 7 | 3eqtr4g | |- ( ph -> ( F ''' A ) = ( G ''' B ) ) |