Step |
Hyp |
Ref |
Expression |
1 |
|
dfateq12d.1 |
|- ( ph -> F = G ) |
2 |
|
dfateq12d.2 |
|- ( ph -> A = B ) |
3 |
1
|
dmeqd |
|- ( ph -> dom F = dom G ) |
4 |
2 3
|
eleq12d |
|- ( ph -> ( A e. dom F <-> B e. dom G ) ) |
5 |
2
|
sneqd |
|- ( ph -> { A } = { B } ) |
6 |
1 5
|
reseq12d |
|- ( ph -> ( F |` { A } ) = ( G |` { B } ) ) |
7 |
6
|
funeqd |
|- ( ph -> ( Fun ( F |` { A } ) <-> Fun ( G |` { B } ) ) ) |
8 |
4 7
|
anbi12d |
|- ( ph -> ( ( A e. dom F /\ Fun ( F |` { A } ) ) <-> ( B e. dom G /\ Fun ( G |` { B } ) ) ) ) |
9 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
10 |
|
df-dfat |
|- ( G defAt B <-> ( B e. dom G /\ Fun ( G |` { B } ) ) ) |
11 |
8 9 10
|
3bitr4g |
|- ( ph -> ( F defAt A <-> G defAt B ) ) |