Metamath Proof Explorer


Theorem dfateq12d

Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses dfateq12d.1
|- ( ph -> F = G )
dfateq12d.2
|- ( ph -> A = B )
Assertion dfateq12d
|- ( ph -> ( F defAt A <-> G defAt B ) )

Proof

Step Hyp Ref Expression
1 dfateq12d.1
 |-  ( ph -> F = G )
2 dfateq12d.2
 |-  ( ph -> A = B )
3 1 dmeqd
 |-  ( ph -> dom F = dom G )
4 2 3 eleq12d
 |-  ( ph -> ( A e. dom F <-> B e. dom G ) )
5 2 sneqd
 |-  ( ph -> { A } = { B } )
6 1 5 reseq12d
 |-  ( ph -> ( F |` { A } ) = ( G |` { B } ) )
7 6 funeqd
 |-  ( ph -> ( Fun ( F |` { A } ) <-> Fun ( G |` { B } ) ) )
8 4 7 anbi12d
 |-  ( ph -> ( ( A e. dom F /\ Fun ( F |` { A } ) ) <-> ( B e. dom G /\ Fun ( G |` { B } ) ) ) )
9 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
10 df-dfat
 |-  ( G defAt B <-> ( B e. dom G /\ Fun ( G |` { B } ) ) )
11 8 9 10 3bitr4g
 |-  ( ph -> ( F defAt A <-> G defAt B ) )