Step |
Hyp |
Ref |
Expression |
1 |
|
dfateq12d.1 |
⊢ ( 𝜑 → 𝐹 = 𝐺 ) |
2 |
|
dfateq12d.2 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
3 |
1
|
dmeqd |
⊢ ( 𝜑 → dom 𝐹 = dom 𝐺 ) |
4 |
2 3
|
eleq12d |
⊢ ( 𝜑 → ( 𝐴 ∈ dom 𝐹 ↔ 𝐵 ∈ dom 𝐺 ) ) |
5 |
2
|
sneqd |
⊢ ( 𝜑 → { 𝐴 } = { 𝐵 } ) |
6 |
1 5
|
reseq12d |
⊢ ( 𝜑 → ( 𝐹 ↾ { 𝐴 } ) = ( 𝐺 ↾ { 𝐵 } ) ) |
7 |
6
|
funeqd |
⊢ ( 𝜑 → ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ Fun ( 𝐺 ↾ { 𝐵 } ) ) ) |
8 |
4 7
|
anbi12d |
⊢ ( 𝜑 → ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( 𝐵 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐵 } ) ) ) ) |
9 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
10 |
|
df-dfat |
⊢ ( 𝐺 defAt 𝐵 ↔ ( 𝐵 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐵 } ) ) ) |
11 |
8 9 10
|
3bitr4g |
⊢ ( 𝜑 → ( 𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵 ) ) |