Metamath Proof Explorer


Theorem dfateq12d

Description: Equality deduction for "defined at". (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses dfateq12d.1 ( 𝜑𝐹 = 𝐺 )
dfateq12d.2 ( 𝜑𝐴 = 𝐵 )
Assertion dfateq12d ( 𝜑 → ( 𝐹 defAt 𝐴𝐺 defAt 𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfateq12d.1 ( 𝜑𝐹 = 𝐺 )
2 dfateq12d.2 ( 𝜑𝐴 = 𝐵 )
3 1 dmeqd ( 𝜑 → dom 𝐹 = dom 𝐺 )
4 2 3 eleq12d ( 𝜑 → ( 𝐴 ∈ dom 𝐹𝐵 ∈ dom 𝐺 ) )
5 2 sneqd ( 𝜑 → { 𝐴 } = { 𝐵 } )
6 1 5 reseq12d ( 𝜑 → ( 𝐹 ↾ { 𝐴 } ) = ( 𝐺 ↾ { 𝐵 } ) )
7 6 funeqd ( 𝜑 → ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ Fun ( 𝐺 ↾ { 𝐵 } ) ) )
8 4 7 anbi12d ( 𝜑 → ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( 𝐵 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐵 } ) ) ) )
9 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
10 df-dfat ( 𝐺 defAt 𝐵 ↔ ( 𝐵 ∈ dom 𝐺 ∧ Fun ( 𝐺 ↾ { 𝐵 } ) ) )
11 8 9 10 3bitr4g ( 𝜑 → ( 𝐹 defAt 𝐴𝐺 defAt 𝐵 ) )