Metamath Proof Explorer


Definition df-dfat

Description: Definition of the predicate that determines if some class F is defined as function for an argument A or, in other words, if the function value for some class F for an argument A is defined. We say that F is defined at A if a F is a function restricted to the member A of its domain. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion df-dfat
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF
 |-  F
1 cA
 |-  A
2 1 0 wdfat
 |-  F defAt A
3 0 cdm
 |-  dom F
4 1 3 wcel
 |-  A e. dom F
5 1 csn
 |-  { A }
6 0 5 cres
 |-  ( F |` { A } )
7 6 wfun
 |-  Fun ( F |` { A } )
8 4 7 wa
 |-  ( A e. dom F /\ Fun ( F |` { A } ) )
9 2 8 wb
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )