Metamath Proof Explorer


Definition df-dfat

Description: Definition of the predicate that determines if some class F is defined as function for an argument A or, in other words, if the function value for some class F for an argument A is defined. We say that F is defined at A if a F is a function restricted to the member A of its domain. (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion df-dfat FdefAtAAdomFFunFA

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF classF
1 cA classA
2 1 0 wdfat wffFdefAtA
3 0 cdm classdomF
4 1 3 wcel wffAdomF
5 1 csn classA
6 0 5 cres classFA
7 6 wfun wffFunFA
8 4 7 wa wffAdomFFunFA
9 2 8 wb wffFdefAtAAdomFFunFA