Metamath Proof Explorer


Theorem afveq12d

Description: Equality deduction for function value, analogous to fveq12d . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses afveq12d.1 φ F = G
afveq12d.2 φ A = B
Assertion afveq12d φ F ''' A = G ''' B

Proof

Step Hyp Ref Expression
1 afveq12d.1 φ F = G
2 afveq12d.2 φ A = B
3 1 2 dfateq12d φ F defAt A G defAt B
4 1 2 fveq12d φ F A = G B
5 3 4 ifbieq1d φ if F defAt A F A V = if G defAt B G B V
6 dfafv2 F ''' A = if F defAt A F A V
7 dfafv2 G ''' B = if G defAt B G B V
8 5 6 7 3eqtr4g φ F ''' A = G ''' B