Metamath Proof Explorer


Theorem afveq12d

Description: Equality deduction for function value, analogous to fveq12d . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses afveq12d.1 φF=G
afveq12d.2 φA=B
Assertion afveq12d φF'''A=G'''B

Proof

Step Hyp Ref Expression
1 afveq12d.1 φF=G
2 afveq12d.2 φA=B
3 1 2 dfateq12d φFdefAtAGdefAtB
4 1 2 fveq12d φFA=GB
5 3 4 ifbieq1d φifFdefAtAFAV=ifGdefAtBGBV
6 dfafv2 F'''A=ifFdefAtAFAV
7 dfafv2 G'''B=ifGdefAtBGBV
8 5 6 7 3eqtr4g φF'''A=G'''B