Description: Equality deduction for function value, analogous to fveq12d . (Contributed by Alexander van der Vekens, 26-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | afveq12d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
afveq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
Assertion | afveq12d | ⊢ ( 𝜑 → ( 𝐹 ''' 𝐴 ) = ( 𝐺 ''' 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afveq12d.1 | ⊢ ( 𝜑 → 𝐹 = 𝐺 ) | |
2 | afveq12d.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | 1 2 | dfateq12d | ⊢ ( 𝜑 → ( 𝐹 defAt 𝐴 ↔ 𝐺 defAt 𝐵 ) ) |
4 | 1 2 | fveq12d | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = ( 𝐺 ‘ 𝐵 ) ) |
5 | 3 4 | ifbieq1d | ⊢ ( 𝜑 → if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) = if ( 𝐺 defAt 𝐵 , ( 𝐺 ‘ 𝐵 ) , V ) ) |
6 | dfafv2 | ⊢ ( 𝐹 ''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) | |
7 | dfafv2 | ⊢ ( 𝐺 ''' 𝐵 ) = if ( 𝐺 defAt 𝐵 , ( 𝐺 ‘ 𝐵 ) , V ) | |
8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐹 ''' 𝐴 ) = ( 𝐺 ''' 𝐵 ) ) |