Metamath Proof Explorer


Theorem afveq12d

Description: Equality deduction for function value, analogous to fveq12d . (Contributed by Alexander van der Vekens, 26-May-2017)

Ref Expression
Hypotheses afveq12d.1 ( 𝜑𝐹 = 𝐺 )
afveq12d.2 ( 𝜑𝐴 = 𝐵 )
Assertion afveq12d ( 𝜑 → ( 𝐹 ''' 𝐴 ) = ( 𝐺 ''' 𝐵 ) )

Proof

Step Hyp Ref Expression
1 afveq12d.1 ( 𝜑𝐹 = 𝐺 )
2 afveq12d.2 ( 𝜑𝐴 = 𝐵 )
3 1 2 dfateq12d ( 𝜑 → ( 𝐹 defAt 𝐴𝐺 defAt 𝐵 ) )
4 1 2 fveq12d ( 𝜑 → ( 𝐹𝐴 ) = ( 𝐺𝐵 ) )
5 3 4 ifbieq1d ( 𝜑 → if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V ) = if ( 𝐺 defAt 𝐵 , ( 𝐺𝐵 ) , V ) )
6 dfafv2 ( 𝐹 ''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹𝐴 ) , V )
7 dfafv2 ( 𝐺 ''' 𝐵 ) = if ( 𝐺 defAt 𝐵 , ( 𝐺𝐵 ) , V )
8 5 6 7 3eqtr4g ( 𝜑 → ( 𝐹 ''' 𝐴 ) = ( 𝐺 ''' 𝐵 ) )