| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-fv |
⊢ ( 𝐹 ‘ 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) |
| 2 |
|
simprr |
⊢ ( ( ⊤ ∧ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) → ∃! 𝑥 𝐴 𝐹 𝑥 ) |
| 3 |
|
reuaiotaiota |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( ℩' 𝑥 𝐴 𝐹 𝑥 ) ) |
| 4 |
2 3
|
sylib |
⊢ ( ( ⊤ ∧ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) → ( ℩ 𝑥 𝐴 𝐹 𝑥 ) = ( ℩' 𝑥 𝐴 𝐹 𝑥 ) ) |
| 5 |
1 4
|
eqtrid |
⊢ ( ( ⊤ ∧ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) → ( 𝐹 ‘ 𝐴 ) = ( ℩' 𝑥 𝐴 𝐹 𝑥 ) ) |
| 6 |
|
eubrdm |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → 𝐴 ∈ dom 𝐹 ) |
| 7 |
6
|
ancri |
⊢ ( ∃! 𝑥 𝐴 𝐹 𝑥 → ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
| 8 |
7
|
con3i |
⊢ ( ¬ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) → ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ) |
| 9 |
8
|
adantl |
⊢ ( ( ⊤ ∧ ¬ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) → ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ) |
| 10 |
|
aiotavb |
⊢ ( ¬ ∃! 𝑥 𝐴 𝐹 𝑥 ↔ ( ℩' 𝑥 𝐴 𝐹 𝑥 ) = V ) |
| 11 |
9 10
|
sylib |
⊢ ( ( ⊤ ∧ ¬ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) → ( ℩' 𝑥 𝐴 𝐹 𝑥 ) = V ) |
| 12 |
11
|
eqcomd |
⊢ ( ( ⊤ ∧ ¬ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) → V = ( ℩' 𝑥 𝐴 𝐹 𝑥 ) ) |
| 13 |
5 12
|
ifeqda |
⊢ ( ⊤ → if ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) , ( 𝐹 ‘ 𝐴 ) , V ) = ( ℩' 𝑥 𝐴 𝐹 𝑥 ) ) |
| 14 |
13
|
mptru |
⊢ if ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) , ( 𝐹 ‘ 𝐴 ) , V ) = ( ℩' 𝑥 𝐴 𝐹 𝑥 ) |
| 15 |
|
dfdfat2 |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) |
| 16 |
|
ifbi |
⊢ ( ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) ) → if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) = if ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) , ( 𝐹 ‘ 𝐴 ) , V ) ) |
| 17 |
15 16
|
ax-mp |
⊢ if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) = if ( ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑥 𝐴 𝐹 𝑥 ) , ( 𝐹 ‘ 𝐴 ) , V ) |
| 18 |
|
df-afv |
⊢ ( 𝐹 ''' 𝐴 ) = ( ℩' 𝑥 𝐴 𝐹 𝑥 ) |
| 19 |
14 17 18
|
3eqtr4ri |
⊢ ( 𝐹 ''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( 𝐹 ‘ 𝐴 ) , V ) |