Metamath Proof Explorer


Theorem dfdfat2

Description: Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion dfdfat2 ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) )

Proof

Step Hyp Ref Expression
1 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
2 relres Rel ( 𝐹 ↾ { 𝐴 } )
3 dffun8 ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) )
4 2 3 mpbiran ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 )
5 4 anbi2i ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) )
6 brres ( 𝑦 ∈ V → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) )
7 6 elv ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) )
8 7 a1i ( 𝐴 ∈ dom 𝐹 → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) )
9 8 eubidv ( 𝐴 ∈ dom 𝐹 → ( ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ∃! 𝑦 ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) )
10 9 ralbidv ( 𝐴 ∈ dom 𝐹 → ( ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) )
11 eldmressnsn ( 𝐴 ∈ dom 𝐹𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) )
12 eldmressn ( 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → 𝑥 = 𝐴 )
13 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
14 13 biimpri ( 𝑥 = 𝐴𝑥 ∈ { 𝐴 } )
15 breq1 ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦𝐴 𝐹 𝑦 ) )
16 15 anbi2d ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝐴 𝐹 𝑦 ) ) )
17 14 16 mpbirand ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ↔ 𝐴 𝐹 𝑦 ) )
18 17 eubidv ( 𝑥 = 𝐴 → ( ∃! 𝑦 ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ↔ ∃! 𝑦 𝐴 𝐹 𝑦 ) )
19 11 12 18 ralbinrald ( 𝐴 ∈ dom 𝐹 → ( ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ↔ ∃! 𝑦 𝐴 𝐹 𝑦 ) )
20 10 19 bitrd ( 𝐴 ∈ dom 𝐹 → ( ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ∃! 𝑦 𝐴 𝐹 𝑦 ) )
21 20 pm5.32i ( ( 𝐴 ∈ dom 𝐹 ∧ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) )
22 1 5 21 3bitri ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) )