Step |
Hyp |
Ref |
Expression |
1 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
2 |
|
relres |
⊢ Rel ( 𝐹 ↾ { 𝐴 } ) |
3 |
|
dffun8 |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ( Rel ( 𝐹 ↾ { 𝐴 } ) ∧ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
4 |
2 3
|
mpbiran |
⊢ ( Fun ( 𝐹 ↾ { 𝐴 } ) ↔ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) |
5 |
4
|
anbi2i |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ) |
6 |
|
brres |
⊢ ( 𝑦 ∈ V → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) ) |
7 |
6
|
elv |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ dom 𝐹 → ( 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) ) |
9 |
8
|
eubidv |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ∃! 𝑦 ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) ) |
10 |
9
|
ralbidv |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ) ) |
11 |
|
eldmressnsn |
⊢ ( 𝐴 ∈ dom 𝐹 → 𝐴 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ) |
12 |
|
eldmressn |
⊢ ( 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) → 𝑥 = 𝐴 ) |
13 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
14 |
13
|
biimpri |
⊢ ( 𝑥 = 𝐴 → 𝑥 ∈ { 𝐴 } ) |
15 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
16 |
15
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ↔ ( 𝑥 ∈ { 𝐴 } ∧ 𝐴 𝐹 𝑦 ) ) ) |
17 |
14 16
|
mpbirand |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ↔ 𝐴 𝐹 𝑦 ) ) |
18 |
17
|
eubidv |
⊢ ( 𝑥 = 𝐴 → ( ∃! 𝑦 ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ↔ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
19 |
11 12 18
|
ralbinrald |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 ( 𝑥 ∈ { 𝐴 } ∧ 𝑥 𝐹 𝑦 ) ↔ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
20 |
10 19
|
bitrd |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ↔ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
21 |
20
|
pm5.32i |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ ∀ 𝑥 ∈ dom ( 𝐹 ↾ { 𝐴 } ) ∃! 𝑦 𝑥 ( 𝐹 ↾ { 𝐴 } ) 𝑦 ) ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |
22 |
1 5 21
|
3bitri |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ ∃! 𝑦 𝐴 𝐹 𝑦 ) ) |