Metamath Proof Explorer


Theorem ralbinrald

Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017)

Ref Expression
Hypotheses ralbinrald.1 ( 𝜑𝑋𝐴 )
ralbinrald.2 ( 𝑥𝐴𝑥 = 𝑋 )
ralbinrald.3 ( 𝑥 = 𝑋 → ( 𝜓𝜃 ) )
Assertion ralbinrald ( 𝜑 → ( ∀ 𝑥𝐴 𝜓𝜃 ) )

Proof

Step Hyp Ref Expression
1 ralbinrald.1 ( 𝜑𝑋𝐴 )
2 ralbinrald.2 ( 𝑥𝐴𝑥 = 𝑋 )
3 ralbinrald.3 ( 𝑥 = 𝑋 → ( 𝜓𝜃 ) )
4 3 adantl ( ( 𝜑𝑥 = 𝑋 ) → ( 𝜓𝜃 ) )
5 1 4 rspcdv ( 𝜑 → ( ∀ 𝑥𝐴 𝜓𝜃 ) )
6 3 bicomd ( 𝑥 = 𝑋 → ( 𝜃𝜓 ) )
7 2 6 syl ( 𝑥𝐴 → ( 𝜃𝜓 ) )
8 7 adantl ( ( 𝜑𝑥𝐴 ) → ( 𝜃𝜓 ) )
9 8 biimpd ( ( 𝜑𝑥𝐴 ) → ( 𝜃𝜓 ) )
10 9 ralrimdva ( 𝜑 → ( 𝜃 → ∀ 𝑥𝐴 𝜓 ) )
11 5 10 impbid ( 𝜑 → ( ∀ 𝑥𝐴 𝜓𝜃 ) )