Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralbinrald.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| ralbinrald.2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 = 𝑋 ) | ||
| ralbinrald.3 | ⊢ ( 𝑥 = 𝑋 → ( 𝜓 ↔ 𝜃 ) ) | ||
| Assertion | ralbinrald | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbinrald.1 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) | |
| 2 | ralbinrald.2 | ⊢ ( 𝑥 ∈ 𝐴 → 𝑥 = 𝑋 ) | |
| 3 | ralbinrald.3 | ⊢ ( 𝑥 = 𝑋 → ( 𝜓 ↔ 𝜃 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝜓 ↔ 𝜃 ) ) |
| 5 | 1 4 | rspcdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 → 𝜃 ) ) |
| 6 | 3 | bicomd | ⊢ ( 𝑥 = 𝑋 → ( 𝜃 ↔ 𝜓 ) ) |
| 7 | 2 6 | syl | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝜃 ↔ 𝜓 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜃 ↔ 𝜓 ) ) |
| 9 | 8 | biimpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜃 → 𝜓 ) ) |
| 10 | 9 | ralrimdva | ⊢ ( 𝜑 → ( 𝜃 → ∀ 𝑥 ∈ 𝐴 𝜓 ) ) |
| 11 | 5 10 | impbid | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝜓 ↔ 𝜃 ) ) |