Metamath Proof Explorer


Theorem ralbinrald

Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017)

Ref Expression
Hypotheses ralbinrald.1
|- ( ph -> X e. A )
ralbinrald.2
|- ( x e. A -> x = X )
ralbinrald.3
|- ( x = X -> ( ps <-> th ) )
Assertion ralbinrald
|- ( ph -> ( A. x e. A ps <-> th ) )

Proof

Step Hyp Ref Expression
1 ralbinrald.1
 |-  ( ph -> X e. A )
2 ralbinrald.2
 |-  ( x e. A -> x = X )
3 ralbinrald.3
 |-  ( x = X -> ( ps <-> th ) )
4 3 adantl
 |-  ( ( ph /\ x = X ) -> ( ps <-> th ) )
5 1 4 rspcdv
 |-  ( ph -> ( A. x e. A ps -> th ) )
6 3 bicomd
 |-  ( x = X -> ( th <-> ps ) )
7 2 6 syl
 |-  ( x e. A -> ( th <-> ps ) )
8 7 adantl
 |-  ( ( ph /\ x e. A ) -> ( th <-> ps ) )
9 8 biimpd
 |-  ( ( ph /\ x e. A ) -> ( th -> ps ) )
10 9 ralrimdva
 |-  ( ph -> ( th -> A. x e. A ps ) )
11 5 10 impbid
 |-  ( ph -> ( A. x e. A ps <-> th ) )