Step |
Hyp |
Ref |
Expression |
1 |
|
ralbinrald.1 |
|- ( ph -> X e. A ) |
2 |
|
ralbinrald.2 |
|- ( x e. A -> x = X ) |
3 |
|
ralbinrald.3 |
|- ( x = X -> ( ps <-> th ) ) |
4 |
3
|
adantl |
|- ( ( ph /\ x = X ) -> ( ps <-> th ) ) |
5 |
1 4
|
rspcdv |
|- ( ph -> ( A. x e. A ps -> th ) ) |
6 |
3
|
bicomd |
|- ( x = X -> ( th <-> ps ) ) |
7 |
2 6
|
syl |
|- ( x e. A -> ( th <-> ps ) ) |
8 |
7
|
adantl |
|- ( ( ph /\ x e. A ) -> ( th <-> ps ) ) |
9 |
8
|
biimpd |
|- ( ( ph /\ x e. A ) -> ( th -> ps ) ) |
10 |
9
|
ralrimdva |
|- ( ph -> ( th -> A. x e. A ps ) ) |
11 |
5 10
|
impbid |
|- ( ph -> ( A. x e. A ps <-> th ) ) |