Metamath Proof Explorer


Theorem dfdfat2

Description: Alternate definition of the predicate "defined at" not using the Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion dfdfat2 FdefAtAAdomF∃!yAFy

Proof

Step Hyp Ref Expression
1 df-dfat FdefAtAAdomFFunFA
2 relres RelFA
3 dffun8 FunFARelFAxdomFA∃!yxFAy
4 2 3 mpbiran FunFAxdomFA∃!yxFAy
5 4 anbi2i AdomFFunFAAdomFxdomFA∃!yxFAy
6 brres yVxFAyxAxFy
7 6 elv xFAyxAxFy
8 7 a1i AdomFxFAyxAxFy
9 8 eubidv AdomF∃!yxFAy∃!yxAxFy
10 9 ralbidv AdomFxdomFA∃!yxFAyxdomFA∃!yxAxFy
11 eldmressnsn AdomFAdomFA
12 eldmressn xdomFAx=A
13 velsn xAx=A
14 13 biimpri x=AxA
15 breq1 x=AxFyAFy
16 15 anbi2d x=AxAxFyxAAFy
17 14 16 mpbirand x=AxAxFyAFy
18 17 eubidv x=A∃!yxAxFy∃!yAFy
19 11 12 18 ralbinrald AdomFxdomFA∃!yxAxFy∃!yAFy
20 10 19 bitrd AdomFxdomFA∃!yxFAy∃!yAFy
21 20 pm5.32i AdomFxdomFA∃!yxFAyAdomF∃!yAFy
22 1 5 21 3bitri FdefAtAAdomF∃!yAFy