Metamath Proof Explorer


Theorem fundmdfat

Description: A function is defined at any element of its domain. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion fundmdfat FunFAdomFFdefAtA

Proof

Step Hyp Ref Expression
1 funres FunFFunFA
2 1 anim1ci FunFAdomFAdomFFunFA
3 df-dfat FdefAtAAdomFFunFA
4 2 3 sylibr FunFAdomFFdefAtA